SERVOSTAR-446M-C

    In-Stock, Ships 1-2 Days

Preparing your secure checkout page...

The SERVOSTAR-446M-C is a compact and versatile servo amplifier designed for modern industrial process automation, offering extensive customization and reliable security. It supports various extension cards, including I/O-14/08, PROFIBUS DP, SERCOS, DeviceNet, EtherCat, and SynqNet, allowing seamless integration into diverse control systems.

Warranty
Wake Industrial Warranty

Quote Request Form:

To contact sales for pricing and lead time:

Payment Methods

Visa
Mastercard
AmEx
Wire Transfer

Shipping Methods

DHL
UPS
FedEx
Freight

Our Credentials

Cary Chamber
DUNS Registered
SAM Registered
BBB Accredited

Product Description:

The SERVOSTAR-446M-C is a compact yet versatile servo amplifier. This device is intended for modern industrial process automation and provides a further broad customization as well as reliable security to the users. What is more, it contains a variety of extension cards such as: I/O-14/08; PROFIBUS DP; SERCOS; DeviceNet; EtherCat and SynqNet that facilitates its use in many types of control systems without any hitches. Besides, in construction of the amplifier it has 2 programmable digital outputs and supports logical combinations of digital signal increasing its flexibility in complex automation Systems.

Another Servo Manufacturer, the SERVOSTAR 446M-C, which employs stop features corresponding to EN 60204 (VDE 0113) guidelines, places strong focus on safety as well. The apparatus is designed to accommodate three standard types of stop functions; Category 0 stop is an emergency function where the machine is stopped instantly and without any controlled action. In Category 1 machine motion is to be stopped but controlled including the supply of energy to the machine until motion stops, whereas in Category 2 process motion is stopped by outside devices but machine energy stays on.

The instrument is 70 millimeters wide and is designed for places with little working space making it easy to mount. In addition, there are two analogue inputs and an internal RS232 port for various communication. Finally, the amplifier also incorporates a restart lock (AS), which is generally used to secure safety measures against people and automatic restarts and to ensure safe operation. There is also a feature known as Emergency Stop which is supported by the amp. This function requires that the controller be deactivated and power supply back-off be undertaken in order to make sure that the equipment is safely switched off.

Analog inputs
Two
DeviceNet expansion card
Supported
Differential-input voltage max.
~ 10 V
EtherCat expansion card
Supported
Ground reference AGND, terminal
X3/7
I/O-14/08 expansion card
Supported
Instrument width
70 mm
Integrated restart lock -AS- for personnel safety,
Yes
Integrated RS232,
Yes
PROFIBUS DP expansion card
Supported
Programmable digital outputs
2
Programmable logical combinations of digital signals
Included
SERCOS expansion card
Supported
Slot for an expansion card
Yes
SynqNet expansion card
Supported
Instructions

Use this calculator to convert between different units of mass. Select the units you want to convert from and to, enter the value, and click "Convert" to see the result.

Understanding Mass

Mass is a fundamental property of objects that measures the amount of matter contained within. It is distinct from weight, which depends on both mass and the gravitational force acting on it. The International System of Units (SI) uses the kilogram (kg) as the standard unit of mass. Familiarity with mass and its units is crucial in various fields, including physics, engineering, and industrial automation.

Importance for Industrial Automation and Servomotors

In industrial automation, precise control of mass and weight is paramount. For instance, servomotors, which are integral components in automation, rely on accurate mass calculations to optimize performance and efficiency. These motors use feedback systems to ensure precise movement, which requires accounting for the mass of mechanical parts and loads. By effectively managing mass, automation systems can achieve higher precision and reliability, minimizing energy consumption and wear on components.

Understanding and converting mass units can enhance the adaptability of automation systems in a global market, where different countries and industries may use diverse measurement units. Thus, a mass conversion tool serves as a practical resource for engineers and technicians, facilitating seamless integration and operation across different scales and measurement standards.

Instructions

Use this calculator to convert between different units of mass. Select the units you want to convert from and to, enter the value, and click "Convert" to see the result.

Understanding Mass

Mass is a fundamental property of objects that measures the amount of matter contained within. It is distinct from weight, which depends on both mass and the gravitational force acting on it. The International System of Units (SI) uses the kilogram (kg) as the standard unit of mass. Familiarity with mass and its units is crucial in various fields, including physics, engineering, and industrial automation.

Importance for Industrial Automation and Servomotors

In industrial automation, precise control of mass and weight is paramount. For instance, servomotors, which are integral components in automation, rely on accurate mass calculations to optimize performance and efficiency. These motors use feedback systems to ensure precise movement, which requires accounting for the mass of mechanical parts and loads. By effectively managing mass, automation systems can achieve higher precision and reliability, minimizing energy consumption and wear on components.

Understanding and converting mass units can enhance the adaptability of automation systems in a global market, where different countries and industries may use diverse measurement units. Thus, a mass conversion tool serves as a practical resource for engineers and technicians, facilitating seamless integration and operation across different scales and measurement standards.

Instructions

How to Determine What Torque You Need for Your Servo Motors

When building a robotic system with servo motors, determining the appropriate torque for each motor is essential. Torque is what allows the servo motor to effectively lift, hold, or move an object. Without sufficient torque, your motor either won’t perform as expected or may damage itself trying.

Here, we’ll break down how to calculate the torque you need, then pivot into some key nuances around how torque works in different contexts.

What Is Torque?

Illustration of torque around a central axis

Torque is a force applied over a distance that causes rotation. You use torque every day when you twist open a jar or turn a doorknob. In the case of servo motors—specifically in robotics—torque determines how much weight a motor can rotate at a certain distance away from its axis. Think about a robotic arm lifting a heavy object: the motor's torque directly affects how much weight the arm can lift, and at what speed.

Mathematically, torque is expressed as:

τ = r × F

  • τ is torque,
  • r is the distance from the axis of rotation,
  • F is the force applied.

If that feels abstract, consider that F is usually the force caused by gravity, meaning it depends on the weight of the object and its distance from the motor's center.

Torque and Servo Motors: The Core Relationship

Illustration of a load at the end of a lever demonstrating it

Servo motors are frequently used in robotic arms or other machines with rotational mechanisms. The amount of torque a servo motor can exert determines its capability to perform mechanical tasks, especially when dealing with varying loads.

The lever arm length—the distance from the rotation point to the load—amplifies the effect of the weight being moved. A longer lever arm requires more torque even if the weight remains the same. So, as we dive into calculations, remember that torque isn't just about force; it’s also about how far away from the motor's axis that force is applied.

Formula Recap

The standard torque equation for servo motors typically used in applications like robotic arms can be expanded slightly:

τ = r × m × g

  • r is the distance from the motor's axis to where the load is applied,
  • m is the mass of the item being moved (in kilograms),
  • g is the acceleration of gravity (~9.81 m/s²).

Let’s translate this into something more immediately practical: a robotic arm needs torque to lift an object at the end of the arm. If the arm is long, you’ll need more torque to achieve that same lift, even if the object you’re lifting doesn’t change in weight.

Components of Torque in Servo Motors

1. Weight of Components

The force caused by the weight of objects being moved is simple physics. Every load you expect the motor to handle has a weight. Multiplied by gravity, that’s your F.

A robotic arm lifting a box must overcome the weight of the box. However, the motor also needs to account for the weight of the components themselves, like robotic arm links or grippers.

2. Distance from the Pivot

The lever arm length is just as crucial. Calculating torque by only considering force and weight without factoring in the arm’s length will result in inaccurate torque requirements and potentially a poor design.

Case Study: A Simple Robotic Arm

Imagine an arm that needs to lift a 1.5 kg box at the end of a 0.5-meter-long arm.

  • m = 1.5 kg
  • r = 0.5 m
  • g = 9.81 m/s² (constant)

We’re now ready to plug in values:

τ = r × m × g

τ = 0.5 m × 1.5 kg × 9.81 m/s²

τ = 7.36 Nm

This means you require a minimum torque of 7.36 Newton-meters (Nm) to lift the box at the end of this particular robotic arm.

Angular Acceleration

In any instance where you need the servo motor to move a load and not just hold it, you must also account for angular acceleration. Angular acceleration means your motor needs extra torque at the beginning and during changes in movement. To calculate it:

τ = I × α

  • I is the moment of inertia of the robot arm (resistance to angular motion),
  • α is angular acceleration.

This means that for movements such as high-speed rotations or rapid direction changes, torque requirements jump. The speed with which the load moves and how quickly the direction changes are factored into torque calculations for dynamic motion.

Final Thoughts

To summarize everything, calculating torque isn’t just as simple as deciding how heavy a load is. It requires you to think about:

  • Distance (where the weight is applied from the axis),
  • Weight of the object being moved,
  • The weight of other mechanical components (like links and joints inside the machine),
  • Angular acceleration, especially if the motor will be moving or changing directions rapidly,
  • Safety margins (plan a buffer of 20-30% torque capability beyond the minimum).

The general idea is that the larger the load or the further away from the pivot, the more torque you need. By thinking through all of these details, you can properly size your servo motor torque needs, ensuring your motor will handle everything smoothly without underperformance during operation.

Get expert servo motor guidance and competitive pricing from Wake Industrial. Whether you need one motor or a complete system, we'll help you find the right solution at the right price. Call 1-919-443-0207 now for a quick quote or email sales@wakeindustrial.com to browse our extensive servo motor inventory.

Instructions

How to Determine What Torque You Need for Your Servo Motors

When building a robotic system with servo motors, determining the appropriate torque for each motor is essential. Torque is what allows the servo motor to effectively lift, hold, or move an object. Without sufficient torque, your motor either won’t perform as expected or may damage itself trying.

Here, we’ll break down how to calculate the torque you need, then pivot into some key nuances around how torque works in different contexts.

What Is Torque?

Illustration of torque around a central axis

Torque is a force applied over a distance that causes rotation. You use torque every day when you twist open a jar or turn a doorknob. In the case of servo motors—specifically in robotics—torque determines how much weight a motor can rotate at a certain distance away from its axis. Think about a robotic arm lifting a heavy object: the motor's torque directly affects how much weight the arm can lift, and at what speed.

Mathematically, torque is expressed as:

τ = r × F

  • τ is torque,
  • r is the distance from the axis of rotation,
  • F is the force applied.

If that feels abstract, consider that F is usually the force caused by gravity, meaning it depends on the weight of the object and its distance from the motor's center.

Torque and Servo Motors: The Core Relationship

Illustration of a load at the end of a lever demonstrating it

Servo motors are frequently used in robotic arms or other machines with rotational mechanisms. The amount of torque a servo motor can exert determines its capability to perform mechanical tasks, especially when dealing with varying loads.

The lever arm length—the distance from the rotation point to the load—amplifies the effect of the weight being moved. A longer lever arm requires more torque even if the weight remains the same. So, as we dive into calculations, remember that torque isn't just about force; it’s also about how far away from the motor's axis that force is applied.

Formula Recap

The standard torque equation for servo motors typically used in applications like robotic arms can be expanded slightly:

τ = r × m × g

  • r is the distance from the motor's axis to where the load is applied,
  • m is the mass of the item being moved (in kilograms),
  • g is the acceleration of gravity (~9.81 m/s²).

Let’s translate this into something more immediately practical: a robotic arm needs torque to lift an object at the end of the arm. If the arm is long, you’ll need more torque to achieve that same lift, even if the object you’re lifting doesn’t change in weight.

Components of Torque in Servo Motors

1. Weight of Components

The force caused by the weight of objects being moved is simple physics. Every load you expect the motor to handle has a weight. Multiplied by gravity, that’s your F.

A robotic arm lifting a box must overcome the weight of the box. However, the motor also needs to account for the weight of the components themselves, like robotic arm links or grippers.

2. Distance from the Pivot

The lever arm length is just as crucial. Calculating torque by only considering force and weight without factoring in the arm’s length will result in inaccurate torque requirements and potentially a poor design.

Case Study: A Simple Robotic Arm

Imagine an arm that needs to lift a 1.5 kg box at the end of a 0.5-meter-long arm.

  • m = 1.5 kg
  • r = 0.5 m
  • g = 9.81 m/s² (constant)

We’re now ready to plug in values:

τ = r × m × g

τ = 0.5 m × 1.5 kg × 9.81 m/s²

τ = 7.36 Nm

This means you require a minimum torque of 7.36 Newton-meters (Nm) to lift the box at the end of this particular robotic arm.

Angular Acceleration

In any instance where you need the servo motor to move a load and not just hold it, you must also account for angular acceleration. Angular acceleration means your motor needs extra torque at the beginning and during changes in movement. To calculate it:

τ = I × α

  • I is the moment of inertia of the robot arm (resistance to angular motion),
  • α is angular acceleration.

This means that for movements such as high-speed rotations or rapid direction changes, torque requirements jump. The speed with which the load moves and how quickly the direction changes are factored into torque calculations for dynamic motion.

Final Thoughts

To summarize everything, calculating torque isn’t just as simple as deciding how heavy a load is. It requires you to think about:

  • Distance (where the weight is applied from the axis),
  • Weight of the object being moved,
  • The weight of other mechanical components (like links and joints inside the machine),
  • Angular acceleration, especially if the motor will be moving or changing directions rapidly,
  • Safety margins (plan a buffer of 20-30% torque capability beyond the minimum).

The general idea is that the larger the load or the further away from the pivot, the more torque you need. By thinking through all of these details, you can properly size your servo motor torque needs, ensuring your motor will handle everything smoothly without underperformance during operation.

Get expert servo motor guidance and competitive pricing from Wake Industrial. Whether you need one motor or a complete system, we'll help you find the right solution at the right price. Call 1-919-443-0207 now for a quick quote or email sales@wakeindustrial.com to browse our extensive servo motor inventory.

Instructions

Use this calculator to convert between different units of power. Select the units you want to convert from and to, enter the value, and click "Convert" to see the result.

Understanding Power Units

Power is a foundational concept in both everyday life and industrial applications. The term "watts" is ubiquitous, named after James Watt, a pivotal figure in the industrial revolution known for his advancements in steam engine technology. A watt represents the rate at which energy is transferred or converted and forms the basis for other power units such as kilowatts (1,000 watts), megawatts (1,000,000 watts), and more.

Importance in Industrial Automation and Servomotors

In industrial automation, precise power control is critical for maximizing efficiency and accuracy. Servomotors, essential components in automation systems, rely heavily on accurate power measurement. These motors, often used in robotics and CNC machinery, require specific power inputs to function correctly, translating electrical energy into controlled movements. The ability to convert between different power units helps engineers and technicians optimize these systems for energy consumption and performance. Whether ensuring that a robotic arm operates with sufficient power or managing the electrical requirements of a complex assembly line, understanding and converting power units is a crucial skill.

As technology advances, the necessity for precision grows. Power conversion tools, therefore, play an indispensable role in maintaining system efficiency and reliability, making them a staple in the toolkit of modern engineers and industrial technicians.

Instructions

Use this calculator to convert between different units of power. Select the units you want to convert from and to, enter the value, and click "Convert" to see the result.

Understanding Power Units

Power is a foundational concept in both everyday life and industrial applications. The term "watts" is ubiquitous, named after James Watt, a pivotal figure in the industrial revolution known for his advancements in steam engine technology. A watt represents the rate at which energy is transferred or converted and forms the basis for other power units such as kilowatts (1,000 watts), megawatts (1,000,000 watts), and more.

Importance in Industrial Automation and Servomotors

In industrial automation, precise power control is critical for maximizing efficiency and accuracy. Servomotors, essential components in automation systems, rely heavily on accurate power measurement. These motors, often used in robotics and CNC machinery, require specific power inputs to function correctly, translating electrical energy into controlled movements. The ability to convert between different power units helps engineers and technicians optimize these systems for energy consumption and performance. Whether ensuring that a robotic arm operates with sufficient power or managing the electrical requirements of a complex assembly line, understanding and converting power units is a crucial skill.

As technology advances, the necessity for precision grows. Power conversion tools, therefore, play an indispensable role in maintaining system efficiency and reliability, making them a staple in the toolkit of modern engineers and industrial technicians.

Frequently Asked Questions about SERVOSTAR-446M-C:

Q: What types of control systems can the SERVOSTAR 446M-C integrate with?

A: The SERVOSTAR 446M-C is highly versatile and supports various expansion cards, including I/O-14/08, PROFIBUS DP, SERCOS, DeviceNet, EtherCAT, and SynqNet. This allows it to integrate seamlessly with a wide range of industrial control systems, providing flexibility and adaptability in complex automation environments.

Q: What safety features are incorporated in the SERVOSTAR 446M-C?

A: The SERVOSTAR 446M-C is designed with a strong focus on safety, in compliance with EN 60204 (VDE 0113) guidelines. It supports three standard stop functions:- Category 0: An emergency stop that instantly halts the machine without controlled action.- Category 1: A controlled stop where the machines motion is halted while energy is still supplied until the motion ceases.- Category 2: The machines motion is stopped by external devices, but the energy supply remains on.Additionally, the amplifier features a restart lock (AS) to prevent unintended restarts and ensure safe operation, as well as an Emergency Stop function that safely deactivates the controller and disconnects the power supply.

Q: What are the key input and output capabilities of the SERVOSTAR 446M-C?

A: The amplifier includes two programmable digital outputs and supports logical combinations of digital signals, enhancing its flexibility in automation systems. It also features two analog inputs and an internal RS232 port for various communication needs, making it suitable for a broad range of industrial applications.

Q: How does the SERVOSTAR 446M-C handle installation in space-constrained environments?

A: The SERVOSTAR 446M-C is only 70 millimeters wide, making it ideal for installation in areas with limited working space. Its compact design allows for easy mounting and integration into existing systems where space is at a premium.

Q: How does the Emergency Stop feature work on the SERVOSTAR 446M-C?

A: The Emergency Stop function on the SERVOSTAR 446M-C requires the controller to be deactivated and the power supply to be disconnected, ensuring that the equipment is safely switched off. This feature is crucial for preventing accidents and ensuring the safety of personnel and machinery in industrial settings.


Internal Product Review

  • ‘‘The SERVOSTAR-446M-C includes three standard stop functions: Category 0 for emergency stops without controlled action, Category 1 for controlled stopping with energy supply maintenance, and Category 2 for stopping motion while keeping machine energy on. This makes it safe and durable in the toughest of environments.’’

Motion Industries logo
3M logo
IBM logo
Gexpro Logo
Caterpillar logo
NASA logo
Ford logo
Vallen logo